(12)

United States Patent

Hasan et al.

US009432255B1

10) Patent No.: US 9,432,255 B1
45) Date of Patent: Aug. 30,2016

(54)

(71)
(72)

(73)

")

@
(22)

(1)

(52)

(58)

(56)

SYSTEMS AND METHODS FOR
CONTROLLING NETWORK DEVICE
TEMPORARILY ABSENT FROM CONTROL
PANEL

Applicant: Google Inc., Mountain View, CA (US)

Inventors: Jahangir Hasan, Saratoga, CA (US);
Rajababru Thatikunta, San Jose, CA
(US); Joon Suan Ong, Cupertino, CA
(US); Charles Robert Barker, Jr.,
Mountain View, CA (US); Lorenzo
Vicisano, Berkley, CA (US); Subbaiah
Naidu Kotla Venkata, Cupertino, CA
(US); Victor Lin, Freemont, CA (US)

Assignee: Google Inc., Mountain View, CA (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 204 days.

Appl. No.: 14/156,279

Filed: Jan. 15, 2014

Int. C1.

GO6F 15/173 (2006.01)

HO4L 1224 (2006.01)

U.S. CL

CPC i HO04L 41/0816 (2013.01)

Field of Classification Search

CPC .......... HO4L 41/0659; HO4L 41/0672; HO04L

41/0816
USPC e 709/223, 227

See application file for complete search history.

References Cited
U.S. PATENT DOCUMENTS
6,742,134 B1* 5/2004 Pothier ............c....... GO6F 8/65

714/4.12
7,002,905 Bl 2/2006 Khouri et al.
7,609,617 B2  10/2009 Appanna et al.

400
™

7,609,618 B1  10/2009 Biswas et al.
8,306,097 B2  11/2012 De Lind Van Wijangaarden et al.

8,499,060 B2* 7/2013 Narayanan ............... GOG6F 8/67
709/208

8,868,897 B2* 10/2014 Clemm ................ GO6F 15/177
370/216

8,948,174 B2* 2/2015 Szyszko ... HO4L 47/2441
370/392

2002/0165961 Al* 11/2002 Everdell ... HO4L 41/22
709/225

2014/0201516 Al* 7/2014 Bjarnason ............... HO4L 45/64
713/150

OTHER PUBLICATIONS

U.S. Appl. No. 13/344,397, filed Jan. 5, 2012, Ayaskant.
Buchegger, et al., Performance Analysis of the Confidant Protocol
(Cooperation of Nodes: Fairness in Dynamic Ad-hoc NeTworks,
Proceedings of the 3rd ACM international symposium on Mobile ad
hoc networking & computing, ACM, Jun. 2002 (11 pages).

(Continued)

Primary Examiner — Phuoc Nguyen
(74) Attorney, Agent, or Firm — McDermott Will & Emery
LLP

(57) ABSTRACT

Aspects and implementations of the present disclosure are
directed to methods and systems for a network tolerant to a
network device that is temporarily absent from the control
plane. In one aspect, in general, the system includes an event
manager configured to send, to a controller configured to
exchange control messages with a network device, a first
request to temporarily withdraw the network device from
control plane interactions. The event manager then triggers
an event at the network device during which the network
device is non-responsive to control plane interactions. After
determining that the event has completed, the event manager
sends the controller a second request to restore the network
device. The controller is configured to request, responsive to
the first request, a network application to transition to a
tolerant state; and to request, responsive to the second
request, the network application to transition to a sensitive
state.

20 Claims, 6 Drawing Sheets

A2

withdraw a network device from control plane interactions

[ A network device event manager sends a request to temporarily ]

l 424

A network device controller, responsive to receiving the withdrawal
request, requests a network application to operate in a state
wherein the network application tolerates, without remedial action,
control plang interaction non-responsiveness by the network device

!

The network device event manager triggers
an event at the network device during which

the network device is

to control plane i

!

the network device has completed the event

]

The network device event manager sends a request to
restore the network device to control plane interactions

440
480
[ The network device event manager determines that ]
472
484

!

The network device controller, responsive to receiving the restore
request, requests the network application to operate in a state
wherein the network application takes remedial action, respective
to the first network device, responsive to control plane interaction
non-responsiveness by the first network device




US 9,432,255 B1
Page 2

(56) References Cited

OTHER PUBLICATIONS

Cisco White Paper, Cisco Catalyst 6500 High Availability: Deploy-
ing Redundant Supervisors for Maximum Uptime, Cisco Systems,
Inc., Apr. 2009 (21 pages).

Das, et al., Application-Aware Aggregation and Traffic Engineering
in a Converged Packet-Circuit Network, Optical Fiber Communi-
cation Conference and Exposition (OFC/NFOEC), 2011 and the
National Fiber Optic Engineers Conference, IEEE, Mar. 2011 (3
pages).

Handigol, et al., Where is the Debugger for my Software-Defined
Network?, Proceedings of the first workshop on Hot topics in
software defined networks, ACM, Aug. 2012 (6 pages).

Jain, et al., B4: Experience with a Globally-Deployed Software
Defined WAN, Proceedings of the ACM SIGCOMM 2013 confer-
ence on SIGCOMM, ACM, Aug. 2013 (12 pages).

Fall, Kevin, A Delay-Tolerant Network Architecture for Challenged
Internets, Proceedings of the 2003 conference on Applications,

technologies, architectures, and protocols for computer communi-
cations, ACM, Aug. 2003 (8 pages).

Levin, et al., Logically Centralized? State Distribution Trade-offs in
Software Defined Networks, Proceedings of the first workshop on
Hot topics in software defined networks. ACM, Aug. 2012 (6
pages).

Reitblatt, et al., Consistent Updates for Software-Defined Networks:
Change You Can Believe In!, Proceedings of the 10th ACM
Workshop on Hot Topics in Networks, ACM, Nov. 2011 (6 pages).
Open Networking Foundation White Paper, Software-Defined Net-
working: The New Norm for Networks, Apr. 13, 2012 (12 pages).
Vanbever, et al., HotSwap: Correct and Efficient Controller
Upgrades for Software-Defined Networks, Proceedings of the work-
shop on Hot topics in software defined networks, ACM, Aug. 2013
(6 pages).

Yap, et al., Towards Software-Friendly Networks, Proceedings of
the first ACM asia-pacific workshop on Workshop on systems,
ACM, Aug. 2010 (5 pages).

* cited by examiner



U.S. Patent Aug. 30, 2016 Sheet 1 of 6 US 9,432,255 Bl

SDN Controller 12

SDN Application
m(a)

160 <

SDN Application T
l 160w S
Event . Memory
Ma1n4a0g o Control Engine 172
o 122
i T
' |
| |
: : Control Plane
! L 112
f————— ;

Network Device 130,

Control Module
132

Control Module
132

Forwarding Engine
136

Forwarding Engine
136

J
/Network Network\

Interface || Interface
\@(d) @(e)/"'

Ny 1
(Network Network\
Interface || Interface
\@(a) @(b)/

Network
Interface

@(n)

Network
Interface
@(n)

Network 11

— —

Figure 1



U.S. Patent Aug. 30, 2016 Sheet 2 of 6 US 9,432,255 Bl

212
Send SDN control engine a request to temporarily withdraw
a network device from control plane interactions
¥ 238
( Receive confirmation from the SDN control engine )
v 240
( Trigger event at the first network device )
v 260
( Determine that the event has completed )
v 272
Send SDN control engine a request to restore
the network device to control plane interactions

Figure 2A

214

a network device from control plane interactions
Y 224
Broadcast withdrawal request to SDN applications

\_/(‘}

\—/)

I 234

Send confirmation

/)

v 274
Receive request to restore
the network device to control plane interactions

Y 284

Broadcast restore request to SDN applications )

;)K

[ Receive request to temporarily withdraw

Figure 2B



U.S. Patent Aug. 30, 2016 Sheet 3 of 6 US 9,432,255 Bl

300
TN

Network
Network Event Control Network
Host Device Manager Engine Application
150 130 140 122 160

312~ 398 -

\

340

394

360

366

By
%\

Figure 3



U.S. Patent Aug. 30, 2016 Sheet 4 of 6 US 9,432,255 Bl

400
N

412

A network device event manager sends a request to temporarily J

withdraw a network device from control plane interactions

'

424
A network device controller, responsive to receiving the withdrawa}

request, requests a network application to operate in a state
wherein the network application tolerates, without remedial action,
control plane interaction non-responsiveness by the network device

l 440

The network device event manager triggers
an event at the network device during which
the network device is non-responsive to control plane interactions

l 460

[ The network device event manager determines that

the network device has completed the event

J
'

The network device event manager sends a request to
restore the network device to control plane interactions

l 484

(The network device controller, responsive to receiving the restoreN
request, requests the network application to operate in a state
wherein the network application takes remedial action, respective
to the first network device, responsive to control plane interaction

L non-responsiveness by the first network device y

Figure 4



U.S. Patent Aug. 30, 2016 Sheet 5 of 6 US 9,432,255 Bl

994
4 N
A network application operates in a “tolerant” state wherein
the network application tolerates, without remedial action, control
plane interaction non-responsiveness by a network device
. y,
588 - ~ 526
~ 598
4 N

The network application operates in a “sensitive” state wherein
the network application takes remedial action, respective to a
network device, responsive to control plane interaction
non-responsiveness by the network device

Figure 5



U.S. Patent

Aug. 30, 2016

Sheet 6 of 6

US 9,432,255 B1

Network
Device
w(a)

Computing System 610

Network
Device
ﬂ(n)

615 ’2/_
Network Processor
Interface 650
Controller
620
( Network )
Interface Cache
622, 675
\. @ J ™
“Network
Interface
\ %(n) o
=
Memory
Other 670
680

Figure 6




US 9,432,255 Bl

1
SYSTEMS AND METHODS FOR
CONTROLLING NETWORK DEVICE
TEMPORARILY ABSENT FROM CONTROL
PANEL

BACKGROUND

Computing systems can exchange information via a data
network by transmitting and receiving data packets accord-
ing to one or more communication protocols. Network
devices propagate the data packets through the network
according to each device’s configuration settings, network
discovery and routing protocols, and flow control embedded
in data communication protocols (e.g., SIP or a TCP hand-
shake). Generally, data packets containing control informa-
tion form a “control plane,” and data packets containing
message content form a “data plane.”

A software-defined network (“SDN”) is a set of network
devices in a data network that includes at least one network
device that relies on a separate controller for configuration
information such as updates to tables for routing network
traffic. In some SDN implementations, an SDN controller is
separated from a controlled network device by a network
path reserved for control messages. This reserved control
channel may also be referred to as the control plane. The
SDN architecture separates network control from data
packet forwarding. An SDN application may operate to
manage network policies, regulate traffic patterns or
resource usage, provide security, control a network protocol,
provide quality of service commitments, or any other net-
work task.

SUMMARY

In one aspect, the disclosure relates to a system. The
system includes a network device event manager configured
to perform the operations of: sending, to at least one network
device controller configured to exchange control messages
with a plurality of network devices including a first network
device, a first request to temporarily withdraw the first
network device from control plane interactions; triggering,
subsequent to sending the first request, an event at the first
network device during which the first network device is
non-responsive to control plane interactions; determining
that the first network device has completed the event; and
sending, to the at least one network device controller respon-
sive to the determination that the event has been completed,
a second request to restore the first network device to control
plane interactions. The system includes a network applica-
tion configured to operate in multiple states, the multiple
states including at least: a first state wherein the network
application tolerates, without remedial action, control plane
interaction non-responsiveness by the first network device;
and a second state wherein the network application takes
remedial action, respective to the first network device,
responsive to control plane interaction non-responsiveness
by the first network device. The system includes at least one
network device controller configured to perform the opera-
tions of: requesting, responsive to receiving the first request
from the network device event manager, the network appli-
cation to transition to the first state; and requesting, respon-
sive to receiving the second request from the network device
event manager, the network application to transition to the
second state.

In one aspect, the disclosure relates to a method. The
method includes sending, by a network device event man-
ager, to at least one network device controller configured to

10

15

20

25

30

35

40

45

50

55

60

65

2

exchange control messages with a plurality of network
devices including a first network device, a first request to
temporarily withdraw the first network device from control
plane interactions. The method includes requesting, by the at
least one network device controller, responsive to receiving
the first message from the network device event manager, a
network application to operate in a first state wherein the
network application tolerates, without remedial action, con-
trol plane interaction non-responsiveness by the first net-
work device. The method includes triggering, by the net-
work device event manager, subsequent to sending the first
request, an event at the first network device during which the
first network device is non-responsive to control plane
interactions. The method includes determining, by the net-
work device event manager, that the first network device has
completed the event. The method includes sending, by the
network device event manager, to the at least one network
device controller responsive to the determination that the
event has been completed, a second request to restore the
first network device to control plane interactions. The
method includes requesting, by the at least one network
device controller, responsive to receiving the second request
from the network device event manager, the network appli-
cation to transition to a second state wherein the network
application takes remedial action, respective to the first
network device, responsive to control plane interaction
non-responsiveness by the first network device.

BRIEF DESCRIPTION OF THE DRAWINGS

The above and related objects, features, and advantages of
the present disclosure will be more fully understood by
reference to the following detailed description, when taken
in conjunction with the following figures, wherein:

FIG. 1 is a block diagram of an example network envi-
ronment;

FIG. 2A is a flowchart for an example method in which an
event manager triggers an event at a network device, during
which the network device is non-responsive to control plane
interactions;

FIG. 2B is a flowchart for an example method in which an
SDN controller causes SDN applications to temporarily
tolerate a network device that is non-responsive to control
plane interactions;

FIG. 3 is a timeline for messages passed during an
example method;

FIG. 4 is a flowchart for an example method of a control
suite temporarily withdrawing a network device from con-
trol plane interactions for the duration of an event;

FIG. 5 is a state diagram for a network application; and

FIG. 6 is a block diagram of a computing system in
accordance with an illustrative implementation.

Like reference numbers and designations in the various
drawings indicate like elements.

DETAILED DESCRIPTION

Aspects and implementations of the present disclosure
generally relate to managing control plane interactions with
a network device while the network device is subject to an
event in which the network device can still forward data
packets in the data plane, but is non-responsive in the control
plane. For example, some network devices can reboot the
computing components responsible for processing, and
responding to, control messages while leaving the compo-
nents responsible for processing data packets undisturbed.



US 9,432,255 Bl

3

At a high level, this can be achieved by running a dedicated
packet forwarding engine separate from the network device
central processor. For example, the packet forwarding
engine can disengage from the central processor, the central
processor can then handle the event while the packet for-
warding engine continues forwarding packets, and the cen-
tral processor can then reengage with the packet forwarding
engine after the event. This process keeps the data plane
through the switch alive. As a result, it is possible for other
network participants, e.g., peer network devices, to continue
forwarding data packets through the network device while it
is non-responsive to control plane interactions.

However, peer network devices that detect a non-respon-
sive network device, specifically, non-responsiveness with
regard to control plane interactions, may perceive the non-
responsive network device as failed. The peer device will
typically take remedial action to avoid sending data packets
to the perceived-failed network device. For example, the
peer device may remove the perceived-failed network
device from its routing tables. This disruption of the network
configuration is unnecessary and causes a loss of network
bandwidth and possibly even loss of access to one or more
host servers.

FIG. 1 is a block diagram of an example network envi-
ronment including a software-defined network (“SDN”). In
broad overview, the illustrated network environment
includes multiple network devices 130,-130,, (generally a
network device 130) controlled by an SDN controller 120.
The SDN controller 120 includes a memory 172 and a
control engine 122. The SDN controller 120 is illustrated as
a controller suite that includes one or more SDN applica-
tions 160 and an event manager 140. However, in some
implementations, the event manager 140 and/or the SDN
applications are implemented separately from the SDN
controller 120.

Each network device 130 includes a memory 174, a
forwarding engine 136, and multiple network interfaces
138,-138,, (generally network interfaces 138). Each network
device 130 also includes a control module 132, which
interacts with the control engine 122 of the SDN controller
120 via a control plane 112. The control plane 112 can be
dedicated links separated from links used to convey data
packets (i.e., the data plane), or the control plane 112 can
share links with the data plane. The network devices 130,,-
130,, interact with devices in a network 110. For example, in
FIG. 1, a first network device 130, is linked to a host 150 via
a first network interface 138, and the network device 130,
is also linked to a peer network device 130,, via a second
network interface 138,.

In more detail, the network device 130 participates in the
data network 110 by receiving and sending data packets via
the network interfaces 138. Each network interface 138 may
be connected to other network devices, e.g., via a data plane.
In some implementations, the connections are bi-directional
data links. In some implementations, the connections are
uni-directional data links, where each link is either an
ingress or egress. The other network devices send data
packets to the network device 130, which may then forward
them to another network device according to its configura-
tion (e.g., rules or routing information stored in memory
174). For example, a data packet may arrive at the network
device 130, via a first interface (e.g., network interface
138,), causing the forwarding engine 136 to process the
received data packet and, for example, forward it to an
appropriate next-hop (e.g., a peer network device 130,,) via
a second interface (e.g., network interface 138,). The for-
warding engine 136 determines which network interface 138

10

15

20

25

30

35

40

45

50

55

60

65

4

to use to forward each data packet received. In some
implementations, a network device 130 is a top-of-rack
switch. In some implementations, a network device 130 is an
unavoidable network device with regard to a host server
(e.g., host 150) such that if the network device 130 fails,
there is no network path to the host server.

The network device 130 includes a control module 132
and memory 174, which stores configuration, rules, and/or
routing data. In some implementations, the control module
132 is implemented as a special purpose circuit (e.g., an
ASIC). In some implementations, the control module 132 is
implemented as a set of computer executable instruction sets
stored in computer accessible memory and executed by one
or more computing processors. The network device control
module 132 is configured to receive configuration and
routing information and to update the configuration and
routing data stored in memory 174. In some implementa-
tions, the control module 132 receives routing data from
other network devices in the network 110, e.g., using ICMP
or BGP messages. In some implementations, the network
device 130 participates in a software-defined network
(“SDN”), and the network device control module 132
receives configuration and routing information from an SDN
controller, such as the controller 120, e.g., via a control plane
112.

The forwarding engine 136 uses the rules, configuration,
and routing data stored in memory 174 to manage the data
traffic received at the network interfaces 138. In some
implementations, the forwarding engine 136 is implemented
as a special purpose circuit (e.g., an ASIC). In some imple-
mentations, the forwarding engine 136 is implemented as a
set of computer executable instruction sets stored in com-
puter accessible memory and executed by one or more
computing processors. The forwarding engine 136 extracts
address information from a data packet (e.g., an IP address
from a packet header) and processes it to determine how to
handle the data packet (e.g., whether to forward the data
packet and/or which network interface 136 to use for for-
warding the data packet). In some implementations, a for-
warding engine 136 can operate independently from other
components of the network device 130, such as the control
module 132.

The network device memory 174 may be any device
suitable for storing computer readable data. The memory
174 may be similar to the memory 670 or cache 675
illustrated in FIG. 6 described below. Examples include, but
are not limited to, semiconductor memory devices such as
EPROM, EEPROM, SDRAM, and flash memory devices. A
network device 130 may have any number of memory
devices 174.

The data network 110 is a network facilitating interactions
between computing devices. An illustrative example data
network 110 is the Internet; however, other networks may be
used. The data network 110 may be composed of multiple
connected sub-networks. The data network 110 can be a
local-area network (LAN), such as a company intranet, a
metropolitan area network (MAN), a wide area network
(WAN), an inter-network such as the Internet, or a peer-to-
peer network, e.g., an ad hoc WiFi peer-to-peer network. The
data network 110 may be any type and/or form of data
network and/or communication network. The data network
110 may be public, private, or a combination of public and
private networks. In general, the data network 110 is a
data-centric network used to convey information between
computing devices, e.g., host 150, and each network device
130 facilitates this communication according to its respec-
tive configuration.



US 9,432,255 Bl

5

As indicated above, the SDN controller 120 includes a
memory 172 and a control engine 122. The SDN controller
120 is illustrated as a suite that includes one or more SDN
applications 160 and an event manager 140. However, in
some implementations, the event manager 140 and/or the
SDN applications are implemented separately from the SDN
controller 120. In some implementations, the SDN controller
is implemented as a server including one or more computing
processors and memory 172. In some implementations, one
or more of the control engine 122, the event manager 140,
and the SDN applications 160, are implemented as a set of
computer executable instruction sets stored in computer
accessible memory (e.g., memory 172) and executed by one
or more computing processors. In some implementations,
one or more of the control engine 122, the event manager
140, and the SDN applications 160, are implemented as a
special purpose circuit (e.g., an ASIC). In some implemen-
tations, the SDN controller is implemented as a virtual
server. In some implementations, the SDN controller 120
has a dedicated communication channel for exchanging
messages with the network devices 130.

The control engine 122 exchanges control messages with
network devices 130 in the SDN. In some implementations,
the control engine 122 uses configuration and routing data
stored in memory 172 to configure the network devices 130.
In some implementations, the control engine 122 periodi-
cally sends a status message to each network device 130. In
some implementations, the control engine 122 periodically
requests status information from each network device 130.

The event manager 140 manages events at the network
devices 130. In some implementations, the event manager
140 is implemented as part of the SDN controller 120, as
illustrated. In some implementations, the event manager 140
is implemented separately from the SDN controller 120. In
some implementations, the event manager 140 is imple-
mented as part of a network device 130. In some implemen-
tations, there is an event manager 140 for each network
device 130. In some implementations, the event manager
140 is implemented as a set of computer executable instruc-
tion sets stored in computer accessible memory and
executed by a computing processor for each event to be
managed. In some implementations, an SDN controller 120
executes an event manager 140 to control a specific event for
a specific network device 130. For example, the SDN
controller 120, in order to upgrade or reboot a network
device 130, may spawn an event manager 140 to manage the
upgrade or reboot event. In some implementations, an event
manager 140 is a multi-threaded process, and a new thread
is spawned for each event.

The SDN application 160 operates to control some aspect
of the network. For example, an SDN application may
operate to manage network policies, regulate traffic patterns
or resource usage, provide security, control a network pro-
tocol, provide quality of service commitments, or any other
network task. In some implementations, each SDN applica-
tion 160 is implemented as part of the SDN controller 120,
as illustrated. In some implementations, an SDN application
160 is implemented separately from the SDN controller 120.
In some implementations, an SDN application 160 controls
the Address Resolution Protocol, Simple Network Manage-
ment Protocol, Link Aggregation Control Protocol, Link
Layer Discovery Protocol, Open Shortest Path First routing
protocol, or the Border Gateway Protocol.

As described below, at least one SDN application 160 can
operate in at least two states: a “sensitive” state, and a
“tolerant” state. In the “sensitive” state, the SDN application
is sensitive to failed control plane interactions. For example,

20

25

30

35

40

45

6

an SDN application 160 in a “sensitive” state may take
remedial action to avoid sending data packets to a network
device it perceives as having failed, e.g., a network device
that is non-responsive to control plane interaction. In the
“tolerant” state, the SDN application is tolerant of failed
control plane interactions. A network device 130 that is
non-responsive to control plane interaction may be func-
tional in the data plane (e.g., the device’s forwarding engine
136 may still be forwarding data packets), and an SDN
application 160 in a “tolerant” state may refrain from taking
remedial action to avoid disturbing the data plane through
the network device 130.

The controller memory 172 may be any device suitable
for storing computer readable data. The memory 172 may be
similar to the memory 670 or cache 675 illustrated in FIG.
6 and described below. Examples include, but are not limited
to, semiconductor memory devices such as EPROM,
EEPROM, SDRAM, and flash memory devices. An SDN
controller 120 may have any number of memory devices
172.

FIG. 2A is a flow chart of a method 202 of temporarily
withdrawing a network device from the control plane of a
network, which can be carried out by a network device event
manager. FIG. 2B is a flow chart of a method 204 for
managing a network device’s temporary withdrawal from
the control plane of a network. FIG. 3 shows a timing
diagram illustrating the timing of various message transmis-
sions and events that occur during the execution of the
methods 202 and 204 shown in FIGS. 2A and 2B. As such,
all three figures are described further below together.

As set forth above, FIG. 2A shows a flow chart of a
method 202 of temporarily withdrawing a network device,
e.g., the network device 130, shown in FIG. 1, from the
control plane of a network. In brief overview, the method
202 includes a network device event manager (e.g., the event
manager 140 illustrated in FIG. 1) sending an SDN control
engine (e.g., the control engine 122 illustrated in FIG. 1) a
request to temporarily withdraw a network device from
control plane interactions (stage 212) and receiving confor-
mation from the SDN control engine of the withdrawal
(stage 238). The method further includes triggering an event
at the network device that renders the network device
non-responsive to control plane operations while it remains
active in the data plane (stage 240). The network device
event manager then determines that the event has completed
(stage 260) and sends the SDN control engine a request to
restore the network device to control plane interactions
(stage 272). The method 204 shown in FIG. 2B beings with
an SDN control engine receiving a request from a network
device event manager to temporarily withdraw a network
device from control plane interactions (stage 214). The SDN
control engine then disseminates the withdrawal request to
one or more SDN applications (stage 224) and sends con-
firmation back to network device (stage 234). After a period
of time, the SDN control engine receives a request from the
network device to be restored to control plane interactions
(stage 274). The SDN control engine then disseminates the
request to the SDN applications (stage 284). The timing
diagram 300, shown in FIG. 3, illustrates the relative tem-
poral ordering of each of the above steps, with time pro-
gressing from the top of the timing diagram 300 to the
bottom.

The process of a network device temporarily withdrawing
from the control plane of a network begins with a network
device event manager transmitting a request to withdraw to
an SDN control engine (stage 212 of FIG. 2A) and the SDN
control engine receiving the request (stage 214 of FIG. 2B).



US 9,432,255 Bl

7

This communication is represented in the timing diagram
300 by the arrow 312, leading from the network device to the
SDN controller. The event manager 140 sends this with-
drawal request 312 in preparation for an event during which
the network device 130 will continue to function in the data
plane, but may appear to have failed in the control plane. For
example, the event may be an upgrade of a control appli-
cation, a control component, or other aspect of the network
device 130. The event may include a reboot of the network
device 130. In some implementations, the withdrawal
request includes an identifier for the network device. In
some implementations, the withdrawal request includes an
estimated length of time until the network device will be
available to rejoin the control plane. In some implementa-
tions, the withdrawal request includes additional parameters.

Next, as indicated by arrow 324 in the timing diagram
300, the SDN control engine disseminates the withdrawal
request to one or more SDN applications (stage 224 of FIG.
2B). In some implementations, the SDN control engine
transmits the message 312 received from the network device
event manager. In some implementations, the SDN control
engine transmits a different message. In some implementa-
tions, the SDN control engine transmits a message 324 that
includes an identifier for the network device. In some
implementations, the SDN control engine transmits a spe-
cific message for each SDN application. In some implemen-
tations, a network application 160 has registered to receive
the message 324. In some implementations, the control
engine 122 provides an application program interface (API)
to the network application 160, and the network application
160 uses the API to receive the message 324. In some
implementations, the network controller 120 broadcasts the
message 324 to multiple network applications 160.

As described in more detail below, in reference to FIG. 5,
in some implementations, in response to the notification
from the SDN control engine that a network device is
temporarily withdrawing from the control plane, the SDN
applications may transition from a “sensitive” state to a
“tolerant” state with respect to the network device identified
by the withdrawal message 324. In the “sensitive” state, the
applications perceive non-responsiveness to control plane
interactions as an indication of a device failure. An SDN
application may take remedial action to avoid sending traffic
to a network device that is perceived as failed. In the
“tolerant” state, the applications refrain from such remedial
actions with regard to the network device that has tempo-
rarily withdrawn. In some implementations, the SDN appli-
cation is quiesced with regard to the network device 130.

After the request is disseminated to the SDN applications,
the SDN control engine sends a confirmation message back
to the network device (stage 234 of FIG. 2B). The message
is represented on the timing diagram as arrow 334. In some
implementations, the control engine 122 sends the confir-
mation message 334 after the control engine 122 has notified
the network applications 160 of the withdrawal request. In
some implementations, the control engine 122 sends the
confirmation message 334 after the control engine 122 has
verified that the network applications 160 are prepared for
the network device to withdraw from control plane interac-
tions.

The event manager 140 subsequently receives a confir-
mation message 334 from the SDN control engine 122
(stage 238 of FIG. 2A). In some implementations, the
confirmation message 334 indicates that the control engine
122 has notified the network applications 160 of the with-
drawal request. In some implementations, the confirmation

10

15

20

25

30

35

40

45

50

55

60

65

8

message 334 confirms that the network applications are
ready for the network device 130 to withdraw from control
plane interactions.

The event manager 140 then triggers the event at the
network device 130 (stage 240). In some implementations,
the network device event manager 140 triggers the event in
response to receiving the confirmation message 334. In
some implementations, the network device triggers the event
by sending an event initiation message 340 to the network
device 130. In some implementations, the network device
event manager 140 triggers the event through a series of
interactions with the network device 130. For example, the
event may be an upgrade of a control application, a control
component, or other aspect of the network device 130,
followed by a reboot of the network device 130—the event
manager 140 may send a first message to initiate the upgrade
and a subsequent message to reboot the network device 130
after the upgrade completes.

In some implementations, the network device 130 may
notify linked devices not controlled by the SDN controller
120, e.g., host 150, of the event. That is, prior to exiting the
control plane, the network device 130 may send a message,
shown as an arrow 352 in the timing diagram 300 of FIG. 3,
to a host 150, e.g., using a signaling protocol. In some
implementations, the link layer discovery protocol
(“LLDP”) is used as the signaling protocol for notifying
hosts of the event. In some implementations, other protocols
are used as the signaling protocol, e.g., CDP, SONMP, or
LLTD. The host server 150 can then freeze gateway address
entries and link aggregation entries corresponding to the
network device 130 until further notification or until a timer
elapses. For example, a gateway address entry, such as an
ARP entry, or a link aggregation entry, such as for a LACP
trunk, may be frozen by not updating timers associated with
an entry or by ignoring an expired timer associated with an
entry, i.e., retaining information that might otherwise be
considered “stale”. In some implementations, a secondary
timer is used to ensure that stale information is not retained
past a secondary threshold of time. In some implementa-
tions, the host 150 extends deadlines or timers associated
with the network device 130. In some implementations, the
host 150 ignores errors related to control plane interaction
failures with the network device 130. For example, a host
150 may obtain information associated with the network
device 130, e.g., using LLDP. An LLDP packet includes
information elements (“TLV”s) that indicate various infor-
mation about the neighbor device, i.e., the network device
130, and there is usually an element for a number of seconds
for which the information is valid (a time-to-live or “TTL,”
which is typically 120 seconds). In some implementations,
the network device 130 sends (as the notification 352) an
LLDP packet with a very long TTL so that the host server
150 will not expect another LLDP update until after the
event has likely ended. In some implementations, the host
server 150, upon receiving a notification 352 that the net-
work device 130 will be temporarily absent from the control
plane, sets an internal timer to retain previously received
information for an extended length of time.

The network device 130 then undergoes the event. During
the event, there is a period of time, shown as a bar 396 in
FIG. 3, for which the network device is non-responsive to
control plane interactions. The network device 130 is still
functional on the data plane and may still forward received
data packets. However, the network device 130 does not
respond, or does not respond reliably, to control messages.

Subsequent to triggering the event, the event manager 140
determines that the event has completed and that the net-



US 9,432,255 Bl

9

work device is ready to resume control plane interactions
(stage 260 of FIG. 2A). Generally, while the network device
130 is non-responsive to control plane interactions, the event
manager 140 is unable to determine status information for
the network device 130. In some implementations, the event
manager 140 periodically polls the network device 130,
sending one or more requests (shown as arrow 362 in FIG.
3) to solicit a response (shown as arrow 366 in FIG. 3)
indicating that the network device 130 has completed the
event. In some implementations, at the end of the period 396
of non-responsiveness, the network device 130 generates
and sends a message (shown as arrow 366 in FIG. 3) to the
event manager 140, to report event completion. That is, in
some implementations, the event manager 140 can deter-
mine that the event has completed without sending polling
messages. In some implementations, the event manager 140
maintains a timer for the event. If the timer expires prior to
receiving a response 366 from the network device 130
indicating recovery, the event manager 140 determines that
the network device has failed.

Once the event manager 140 has determined that the event
has completed (stage 260 of FIG. 2A), the event manager
140 then sends the network control engine 122 a request 372
to restore the network device 130 to control plane interac-
tions (stage 272 of FIG. 2A).

During the event, for a period of time 396, the network
device 130 is non-responsive to control plane interactions.
When the network device 130 has recovered, i.e., when the
event is over, the method 204 continues. This delay is
indicated in FIG. 2B by a dotted arrow.

After the event has completed, the network controller 120,
or more specifically the network control engine 122,
receives a request (shown as arrow 372 in FIG. 3) to restore
the network device 130 to control plane interactions (stage
274 in FIG. 2B). The network control engine 122, respon-
sive to receiving this request 372, then transmits a restora-
tion request (shown as arrow 384 in FIG. 3) to one or more
network applications 160 (stage 284 in FIG. 2B). In some
implementations, a network application 160 has registered
to receive the restoration request 372. As indicated above, in
some implementations, the control engine 122 provides an
application program interface (API) to the network applica-
tion 160, and the network application 160 uses the API to
receive the restoration request 372. In some implementa-
tions, the network controller 120 broadcasts the restoration
request 372 to multiple network applications 160. The
network applications then transition to a “sensitive” state
398 with regard to the network device. See, e.g., FIG. 5,
described below.

FIG. 4 is a flowchart for an example method of a control
suite temporarily withdrawing a network device from con-
trol plane interactions for the duration of an event. The
control suite includes a network device event manager and
a network device control engine. In some implementations,
the event manager and the control engine are components of
a unified system. In some implementations, the event man-
ager and the control engine are separate. In broad overview,
the method 400 begins with a network device event manager
sending a request to temporarily withdraw a network device
from control plane interaction (stage 412). A network device
control engine, responsive to receiving the withdrawal
request, requests a network application to operate in a state
wherein the network application tolerates, without remedial
action, control plane interaction non-responsiveness by the
network device (stage 424). The network device event
manager then triggers an event at the network device during
which the network device is non-responsive to control plane

10

15

20

25

30

35

40

45

50

55

60

65

10

interactions (stage 440). The network device event manager
determines that the network device has completed the event
(stage 460) and subsequently sends a request to restore the
network device to control plane interactions (stage 472). The
network device controller, responsive to receiving the
restore request, requests the network application to operate
in a state wherein the network application takes remedial
action, respective to the first network device, responsive to
control plane interaction non-responsiveness by the first
network device (stage 484).

In more detail, referring to FIG. 4, the method 400 begins
with a network device event manager sending a request to
temporarily withdraw a network device from control plane
interaction (stage 412). For example, as described above in
reference to FIGS. 2A and 3, at stage 212, the network
device event manager 140 sends a request (shown as arrow
312 in FIG. 3) to the network controller 120, or more
specifically, to the network control engine 122.

Referring to FIGS. 2B, 3, and 4, the network device
control engine 122, responsive to receiving the withdrawal
request 312, requests a network application 160 to operate in
a state wherein the network application tolerates, without
remedial action, control plane interaction non-responsive-
ness by the network device (stage 424). For example, as
described above in reference to FIGS. 2B and 3, at stage 224,
the network controller 120 sends a message 324 to a network
application 160.

After sending the request 312 to temporarily withdraw a
network device 130 from control plane interaction (stage
412), the network device event manager 140 then triggers an
event at the network device 130 during which the network
device 130 is non-responsive to control plane interactions
(stage 440). For example, as described above in reference to
FIGS. 2A and 3, at stage 240, the network device event
manager 140 sends a request 340 to the network device 130.

The network device event manager 140 determines that
the network device has completed the event (stage 460). For
example, in some implementations, as described above in
reference to FIGS. 2A and 3, at stage 260, the network
device event manager 140 periodically sends a polling
message 362 to the network device 130 to solicit a response
366 indicating that the network device 130 is responsive.

The network device event manager 140 subsequently
sends a request to restore the network device to control plane
interactions (stage 472). For example, as described above in
reference to FIGS. 2A and 3, at stage 272, the network
device event manager 140 sends a request 372 to the
network controller 120, or more specifically, to the network
control engine 122.

The network device control engine 122, responsive to
receiving the restore request 372, requests the network
application 160 to operate in a state wherein the network
application takes remedial action, respective to the first
network device, responsive to control plane interaction
non-responsiveness by the first network device (stage 484).
For example, as described above in reference to FIGS. 2B
and 3, at stage 284, the network controller 120 sends a
request 384 to the network application 160.

FIG. 5 is a state diagram for a network application. A
network application may implement a network protocol or
service. A network application may dynamically manage
network resources according to implementation-specific
requirements. A network application may monitor network
usage and adjust network behavior to optimize resource
usage. In general, a network application operates in at least
two states with respect to a given network device: a tolerant
state 594 wherein the network application tolerates control



US 9,432,255 Bl

11

plane interaction non-responsiveness by the network device,
and a sensitive state 598 wherein the network application
does not tolerate control plane interaction non-responsive-
ness by the network device. In the sensitive state 598, the
network application takes remedial action, respective to the
non-responsive network device. The sensitive state 598 is
typically a normal operational state, and the tolerant state
594 is typically an exceptional state reserved for special
circumstances, such as where the network device is func-
tional on the data plane but non-responsive on the control
plane.

Referring to FIG. 5 in more detail, a network application
in a sensitive state 598 can transition to a tolerant state 594
(transition 526) with respect to a given network device. In
some implementations, the network application switches
states responsive to receipt of a notification that the network
device is entering a non-responsive mode. In some imple-
mentations, the network application registers with a control
engine to receive these notifications and the control engine
notifies all such registered applications. In some implemen-
tations, the network application detects that a network
device is functional on the data plane but non-responsive on
the control plane and transitions to the tolerant state 594 in
response to this detection.

While in the tolerant state 594, the network application
functions in a manner that avoids unnecessary remedial
action. In some implementations, the network application
refrains from transmitting control messages to the network
device. In some implementations, the network application
ignores error messages related to the network device. In
some implementations, the network application freezes any
timers associated with the network device. In some imple-
mentations, the network application ignores expired timers
related to the network device. For example, a network
application may maintain status information for the network
device, and may be configured to remove stale status infor-
mation after a period of time. To remain active, status
information for a network device is periodically updated.
For example, the network device may periodically tender
status information or may be periodically probed for new
status information. The status information may include a
timestamp indicating time of collection; the status informa-
tion may include a timestamp indicating an expiration time.
In some implementations, a network application in the
tolerant state 594 does not remove or invalidate status
information related to a network device absent from the
control plane, even if the status information is “stale” as
indicated where the collection time is older than a threshold
or where the expiration time has passed. In some implemen-
tations, the network application retains stale status informa-
tion for the network device until the status information is
updated. The status information may include a time-to-live
(“TTL”) indicating a number of time units for which the data
is valid. The TTL may be periodically decremented. In some
implementations, a network application in the tolerant state
594 does not decrement a TTL for status information related
to a network device absent from the control plane.

A network application in a tolerant state 594 can transition
to a sensitive state 598 (transition 588) with respect to a
given network device. In some implementations, the net-
work application switches states responsive to receipt of a
notification that the network device has recovered from a
non-responsive mode. In some implementations, the net-
work application registers with a control engine to receive
these notifications and the control engine notifies all such
registered applications. In some implementations, the net-
work application detects that a network device is functional

10

15

20

25

30

40

45

50

55

60

12

on the control plane and transitions to the sensitive state 594
in response to this detection. In some implementations, a
network application transitions to the sensitive state 598 in
response to receiving new status information from the
network device. In some implementations, a network appli-
cation receives notification that the network device has
recovered and, responsive to this notification, the network
application requests new status information from the net-
work device. In some such implementations, the network
application waits to transition to a sensitive state 598 until
receipt of the new status information or until expiration of a
recovery timer (e.g., the network application may require
that the network device provide updated status information
within a pre-set period of time after notification of recovery).

While in the sensitive state 598, the network application
functions in a manner that takes remedial action when a
network device is non-responsive to control plane interac-
tions or otherwise perceived as to have failed. In some
implementations, remedial action includes removing status
information related to the network device from memory. In
some implementations, remedial action includes generating
new routing tables and/or new routing rules that avoid the
network device. In some implementations, remedial action
includes propagating failure notifications pertaining to the
network device (and/or network destinations only accessible
via the network device) to peer network devices. Remedial
action may be disruptive to the network.

FIG. 6 is a block diagram of a computing system for use
in implementing the computerized components described
herein, in accordance with an illustrative implementation. In
broad overview, the computing system includes at least one
processor 650 for performing actions in accordance with
instructions and one or more memory devices 670 or 675 for
storing instructions and data. The illustrated example com-
puting system 610 includes one or more processors 650 in
communication, via a bus 615, with at least one network
interface controller 620 with one or more network interfaces
622, ,, connecting to network devices 612,,,), memory
670, and any other devices 680, e.g., an I/O interface.
Generally, a processor 650 will execute instructions received
from memory. The processor 650 illustrated incorporates, or
is directly connected to, cache memory 675.

In more detail, the processor 650 may be any logic
circuitry that processes instructions, e.g., instructions
fetched from the memory 670 or cache 675. In many
embodiments, the processor 650 is a microprocessor unit or
special purpose processor. The computing device 610 may
be based on any processor, or set of processors, capable of
operating as described herein. The processor 650 may be a
single core or multi-core processor. The processor 650 may
be multiple processors.

The memory 670 may be any device suitable for storing
computer readable data. The memory 670 may be a device
with fixed storage or a device for reading removable storage
media. Examples include all forms of non-volatile memory,
media and memory devices, semiconductor memory devices
(e.g., EPROM, EEPROM, SDRAM, and flash memory
devices), magnetic disks, magneto optical disks, and optical
discs (e.g., CD ROM, DVD-ROM, and Blu-Ray® discs). A
computing system 610 may have any number of memory
devices 670.

The cache memory 675 is generally a form of computer
memory placed in close proximity to the processor 650 for
fast read times. In some implementations, the cache memory
675 is part of, or on the same chip as, the processor 650. In
some implementations, there are multiple levels of cache
675, e.g., L.2 and L3 cache layers.



US 9,432,255 Bl

13

The network interface controller 620 manages data
exchanges via the network interfaces 622, (generally
network interface 622). The network interface controller 620
handles the physical and data link layers of the OSI model
for network communication. In some implementations,
some of the network interface controller’s tasks are handled
by the processor 650. In some implementations, the network
interface controller 620 is part of the processor 650. In some
implementations, a computing system 610 has multiple
network interface controllers 620. The network interfaces
622, ,, are connection points for physical network links. In
some implementations, the network interface controller 620
supports wireless network connections and an interface 622
is a wireless receiver/transmitter. Generally, a computing
device 610 exchanges data with other computing devices
612, via physical or wireless links to a network interface
622, . In some implementations, the network interface
controller 620 implements a network protocol such as Eth-
ernet.

The other computing devices 612, ,,, are connected to the
computing device 610 via a network interface 622. The other
computing devices 612, ,,, may be peer computing devices,
network devices, or any other computing device with net-
work functionality. For example, a first computing device
612 ,, may be a network device such as a hub, a bridge, a
switch, or a router, connecting the computing device 610 to
a data network such as the Internet.

The other devices 680 may include an I/O interface,
external serial device ports, and any additional co-proces-
sors. For example, a computing system 610 may include an
interface (e.g., a universal serial bus (USB) interface) for
connecting input devices (e.g., a keyboard, microphone,
mouse, or other pointing device), output devices (e.g., video
display, speaker, or printer), or additional memory devices
(e.g., portable flash drive or external media drive). In some
implementations, a computing device 610 includes an addi-
tional device 680 such as a co-processor, e.g., a math
co-processor can assist the processor 650 with high preci-
sion or complex calculations.

Implementations of the subject matter and the operations
described in this specification can be implemented in digital
electronic circuitry, or in computer software embodied on a
tangible medium, firmware, or hardware, including the
structures disclosed in this specification and their structural
equivalents, or in combinations of one or more of them.
Implementations of the subject matter described in this
specification can be implemented as one or more computer
programs embodied on a tangible medium, i.e., one or more
modules of computer program instructions, encoded on one
or more computer storage media for execution by, or to
control the operation of, a data processing apparatus. A
computer storage medium can be, or be included in, a
computer-readable storage device, a computer-readable stor-
age substrate, a random or serial access memory array or
device, or a combination of one or more of them. The
computer storage medium can also be, or be included in, one
or more separate components or media (e.g., multiple CDs,
disks, or other storage devices). The computer storage
medium may be tangible and non-transitory.

The operations described in this specification can be
implemented as operations performed by a data processing
apparatus on data stored on one or more computer-readable
storage devices or received from other sources.

A computer program (also known as a program, software,
software application, script, or code) can be written in any
form of programming language, including compiled or
interpreted languages, declarative or procedural languages,

10

15

20

25

30

35

40

45

50

55

60

65

14

and it can be deployed in any form, including as a stand-
alone program or as a module, component, subroutine,
object, or other unit suitable for use in a computing envi-
ronment. A computer program may, but need not, correspond
to a file in a file system. A program can be stored in a portion
of a file that holds other programs or data (e.g., one or more
scripts stored in a markup language document), in a single
file dedicated to the program in question, or in multiple
coordinated files (e.g., files that store one or more modules,
sub programs, or portions of code). A computer program can
be deployed to be executed on one computer or on multiple
computers that are located at one site or distributed across
multiple sites and interconnected by a communication net-
work. Examples of communication networks include a local
area network (“LLAN™) and a wide area network (“WAN”),
an inter-network (e.g., the Internet), and peer-to-peer net-
works (e.g., ad hoc peer-to-peer networks).

The processes and logic flows described in this specifi-
cation can be performed by one or more programmable
processors executing one or more computer programs to
perform actions by operating on input data and generating
output. The processes and logic flows can also be performed
by, and apparatus can also be implemented as, special
purpose logic circuitry, e.g., an FPGA (field programmable
gate array) or an ASIC (application specific integrated
circuit).

While this specification contains many specific imple-
mentation details, these should not be construed as limita-
tions on the scope of any inventions or of what may be
claimed, but rather as descriptions of features specific to
particular implementations of particular inventions. Certain
features that are described in this specification in the context
of separate implementations can also be implemented in
combination in a single implementation. Conversely, vari-
ous features that are described in the context of a single
implementation can also be implemented in multiple imple-
mentations separately or in any suitable sub-combination.
Moreover, although features may be described above as
acting in certain combinations and even initially claimed as
such, one or more features from a claimed combination can
in some cases be excised from the combination, and the
claimed combination may be directed to a sub-combination
or variation of a sub-combination.

Similarly, while operations are depicted in the drawings in
a particular order, this should not be understood as requiring
that such operations be performed in the particular order
shown or in sequential order, or that all illustrated operations
be performed, to achieve desirable results. In certain cir-
cumstances, multitasking and parallel processing may be
advantageous. Moreover, the separation of various system
components in the implementations described above should
not be understood as requiring such separation in all imple-
mentations, and it should be understood that the described
program components and systems can generally be inte-
grated together in a single software product or packaged into
multiple software products.

References to “or” may be construed as inclusive so that
any terms described using “or” may indicate any of a single,
more than one, and all of the described terms. The labels
“first,” “second,” “third,” an so forth are not necessarily
meant to indicate an ordering and are generally used merely
to distinguish between like or similar items or elements.

Thus, particular implementations of the subject matter
have been described. Other implementations are within the
scope of the following claims. In some cases, the actions
recited in the claims can be performed in a different order
and still achieve desirable results. In addition, the processes



US 9,432,255 Bl

15

depicted in the accompanying figures do not necessarily
require the particular order shown, or sequential order, to
achieve desirable results. In certain implementations, mul-
titasking or parallel processing may be utilized.

What is claimed is:

1. A system comprising:

a network device event manager configured to perform

the operations of:

sending, to at least one network device controller
configured to exchange control messages with a
plurality of network devices including a first network
device, a first request to temporarily withdraw the
first network device from control plane interactions;

triggering, subsequent to sending the first request, an
event at the first network device during which the
first network device is non-responsive to control
plane interactions;

determining that the first network device has completed
the event; and

sending, to the at least one network device controller
responsive to the determination that the event has
been completed, a second request to restore the first
network device to control plane interactions;

a network application configured to operate in multiple

states, the multiple states including at least:

a first state wherein the network application tolerates,
without remedial action, control plane interaction
non-responsiveness by the first network device; and

a second state wherein the network application takes
remedial action, respective to the first network
device, responsive to control plane interaction non-
responsiveness by the first network device; and

at least one network device controller configured to

perform the operations of:

requesting, responsive to receiving the first request
from the network device event manager, the network
application to transition to the first state; and

requesting, responsive to receiving the second request
from the network device event manager, the network
application to transition to the second state.

2. The system of claim 1, wherein, during the event, the
first network device is functionally-responsive to data mes-
sages.

3. The system of claim 2, wherein a network application
tolerates control plane interaction non-responsiveness by the
first network device by freezing state information for the
first network device.

4. The system of claim 2, wherein a network application
tolerates control plane interaction non-responsiveness by the
first network device by ignoring any error messages related
to the first network device.

5. The system of claim 1, wherein the event is a reboot of
the first network device.

6. The system of claim 1, wherein:

the at least one network device controller is configured to

send a ready message to the network device event

manager when the one or more network protocol man-
agers are prepared to tolerate control plane interaction
non-responsiveness by the first network device; and

the network device event manager is configured to trigger
the event at the first network device responsive to
receiving the ready message.

7. The system of claim 1, wherein the network device
event manager is further configured to poll the first network
device to determine that the event has completed.

8. The system of claim 1, wherein a first network protocol
control manager, in the one or more network protocol

10

15

20

25

30

35

40

45

50

55

60

65

16

managers, controls one of the Address Resolution Protocol,
Simple Network Management Protocol, Link Aggregation
Control Protocol, Link Layer Discovery Protocol, Open
Shortest Path First routing protocol, and the Border Gateway
Protocol.

9. The system of claim 1, further comprising the first
network device, wherein the first network device is config-
ured to

send, to a second device prior to the event, a first message

notifying the second device of the event; and

send, to the second device subsequent to the event, a

second message notifying the second device of comple-
tion of the event;

wherein the second device is not controlled by the at least

one network device controller.
10. The system of claim 9, wherein the second device will,
responsive to the first notification message, freeze any
gateway address entries for the first network device, and
freeze any link aggregation entries that include the first
network device, until receipt of the second notification
message or until a specified period of time has elapsed.
11. A method comprising:
sending, by a network device event manager, to at least
one network device controller configured to exchange
control messages with a plurality of network devices
including a first network device, a first request to
temporarily withdraw the first network device from
control plane interactions;
requesting, by the at least one network device controller,
responsive to receiving the first message from the
network device event manager, a network application
to operate in a first state wherein the network applica-
tion tolerates, without remedial action, control plane
interaction non-responsiveness by the first network
device;
triggering, by the network device event manager, subse-
quent to sending the first request, an event at the first
network device during which the first network device is
non-responsive to control plane interactions;

determining, by the network device event manager, that
the first network device has completed the event;

sending, by the network device event manager, to the at
least one network device controller responsive to the
determination that the event has been completed, a
second request to restore the first network device to
control plane interactions; and

requesting, by the at least one network device controller,

responsive to receiving the second request from the
network device event manager, the network application
to transition to a second state wherein the network
application takes remedial action, respective to the first
network device, responsive to control plane interaction
non-responsiveness by the first network device.

12. The method of claim 11, wherein, during the event, the
first network device is functionally-responsive to data mes-
sages.

13. The method of claim 12, wherein a network applica-
tion tolerates control plane interaction non-responsiveness
by the first network device by freezing state information for
the first network device.

14. The method of claim 12, wherein a network applica-
tion tolerates control plane interaction non-responsiveness
by the first network device by ignoring any error messages
related to the first network device.

15. The method of claim 11, wherein the event is a reboot
of the first network device.



US 9,432,255 Bl

17

16. The method of claim 11, further comprising:

sending, by the at least one network device controller, a
ready message to the network device event manager
when the one or more network protocol managers are
prepared to tolerate control plane interaction non-re-
sponsiveness by the first network device; and

triggering, by the network device event manager, the
event at the first network device responsive to receiving
the ready message.

17. The method of claim 11, wherein the network device
event manager is further configured to poll the first network
device to determine that the event has completed.

18. The method of claim 11, wherein a first network
protocol control manager, in the one or more network
protocol managers, controls one of the Address Resolution
Protocol, Simple Network Management Protocol, Link
Aggregation Control Protocol, Link Layer Discovery Pro-
tocol, Open Shortest Path First routing protocol, and the
Border Gateway Protocol.

10

18
19. The method of claim 11, further comprising:

sending, by the first network device, to a second device,
prior to the event, a first message notifying the second
device of the event; and

sending, by the first network device, to the second device,

subsequent to the event, a second message notifying the
second device of completion of the event;

wherein the second device is not controlled by the at least

one network device controller.

20. The method of claim 19, wherein the second device
will, responsive to the first notification message, freeze any
gateway address entries for the first network device, and
freeze any link aggregation entries trunks that include the
first network device, until receipt of the second notification
message or until a specified period of time has elapsed.

#* #* #* #* #*



